Design of a Multi-mode Flight Deck Decision Support System for Airborne Conflict Management

نویسندگان

  • Richard Barhydt
  • Karthik Krishnamurthy
چکیده

NASA Langley has developed a multi-mode decision support system for pilots operating in a Distributed AirGround Traffic Management (DAG-TM) environment. An Autonomous Operations Planner (AOP) assists pilots in performing separation assurance functions, including conflict detection, prevention, and resolution. Ongoing AOP design has been based on a comprehensive human factors analysis and evaluation results from previous human-in-theloop experiments with airline pilot test subjects. AOP considers complex flight mode interactions and provides flight guidance to pilots consistent with the current aircraft control state. Pilots communicate goals to AOP by setting system preferences and actively probing potential trajectories for conflicts. To minimize training requirements and improve operational use, AOP design leverages existing alerting philosophies, displays, and crew interfaces common on commercial aircraft. Future work will consider trajectory prediction uncertainties, integration with the TCAS collision avoidance system, and will incorporate enhancements based on an upcoming air-ground coordination experiment.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Flight Deck Decision Support Tool for Autonomous Airborne Operations

NASA is developing a flight deck decision support tool to support research into autonomous operations in a future distributed air/ground traffic management environment. This interactive real-time decision aid, referred to as the Autonomous Operations Planner (AOP), will enable the flight crew to plan autonomously in the presence of dense traffic and complex flight management constraints. In ass...

متن کامل

Airborne Tactical Intent-Based Conflict Resolution Capability

Trajectory-based operations with self-separation involve the aircraft taking the primary role in the management of its own trajectory in the presence of other traffic. In this role, the flight crew assumes the responsibility for ensuring that the aircraft remains separated from all other aircraft by at least a minimum separation standard. These operations are enabled by cooperative airborne sur...

متن کامل

Use of Traffic Intent Information by Autonomous Aircraft in Constrained Operations

This paper presents findings of a research study designed to provide insight into the issue of intent information exchange in constrained en-route air-traffic operations and its effect on pilot decision-making and flight performance. The piloted simulation was conducted in the Air Traffic Operations Laboratory at the NASA Langley Research Center. Two operational modes for autonomous flight mana...

متن کامل

Conflict Resolution Automation and Pilot Situation Awareness

This study compared pilot situation awareness across three traffic management concepts. The Concepts varied in terms of the allocation of traffic avoidance responsibility between the pilot on the flight deck, the air traffic controllers, and a conflict resolution automation system. In Concept 1, the flight deck was equipped with conflict resolution tools that enable them to fully handle the res...

متن کامل

Airborne Seeker Application in Three Dimensional Formation Flight of UAVs

This paper deals with the leader-follower formation control problem while communication constraint in data transmitting is considered. From a practical point of view, we study the case in which unmanned vehicles are subject to the limited sensing, and communication is of a particular interest. A three-dimensional formation flight of multi-unmanned aerial vehicles with leader-follower configurat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004